Course Duration: 25 days (60 hours duration).

Bigdata Fundamentals

Day1: (2hours)

- 1. Understanding BigData.
 - a. What is Big Data?
 - b. Big-Data characteristics.
 - c. Challenges with the traditional Data Base Systems and Distributed Systems.
- 2. Hadoop Distributions:
 - a. Hortonworks
 - b. Cloudera
 - c. Pivotal HD
 - d. Greenplum.

Day2: (2hours)

- 3. Introduction to Apache Hadoop.
 - a. Flavors of Hadoop: Big-Insights, Google Query etc..
- 4. Hadoop Eco-system components: Introduction
 - a. MapReduce
 - b. HDFS
 - c. Apache Pig
 - d. Apache Hive
 - e. HBASE
 - f. Apache Oozie
 - g. FLUME
 - h. SQOOP
 - i. Spark.
 - j. Kafka
 - k. Crunch

Day3: (2hours)

- 5. Understanding Hadoop Cluster
- 6. Hadoop Core-Components.
 - a. NameNode.
 - b. JobTracker.
 - c. TaskTracker.
 - d. DataNode.
 - e. SecondaryNameNode.
- 7. HDFS Architecture
 - f. Why 64MB?
 - g. Why Block?
 - h. Why replication factor 3?

Course Duration: 25 days (60 hours duration).

Day4: (2hours)

- 8. Discuss NameNode and DataNode.
- 9. Discuss JobTracker and TaskTracker.
- 10. Typical workflow of Hadoop application
- 11. Rack Awareness.
 - a. Network Topology.
 - b. Assignment of Blocks to Racks and Nodes.
 - c. Block Reports
 - d. Heart Beat
 - e. Block Management Service.

Day5: (4hours)

- 12. Anatomy of File Write.
- 13. Anatomy of File Read.
- 14. Heart Beats and Block Reports
- 15. Map Reduce Overview
- 16. Cluster Configuration
 - a. Core-default.xml
 - b. Hdfs-default.xml
 - c. Mapred-default.xml
 - d. Yarn-site.xml
 - e. Hadoop-env.sh
 - f. Slaves
 - a. Masters
- 17. Map Reduce Framework
- 18. Why Map Reduce?
- 19. Use cases where Map Reduce is used.
- 20. YARN Architecture
- 21. Hadoop Classic vs YARN
- 22. YARN Demo

Day6: (2hours)

- 23. MR Practicals
 - a. Setup environment for the programs.
 - b. Possible ways of writing Map Reduce program with sample codes find the best code and discuss.
 - c. Configured, Tool, GenericOptionParser and gueues usage.
- 24. Limitations of traditional way of solving word count with large dataset.

Course Duration: 25 days (60 hours duration).

Day7: (2hours)

- 25. Map Reduce way of solving the problem.
- 26. Complete overview of MapReduce.
- 27. Unit testing of mapreduce programs using Junit, MRUnit frameworks.
- 28. Challenges in Hadoop Testing and options available
- 29. Manual testing of MapReduce programs

Day8: (2hours)

- 30. Split Size
- 31. Combiners
- 32. Multi Reducers
- 33. Parts of Map Reduce
- 34. Shuffle, Sort and Merge phases
- 35. Map Reduce Design Patterns

Day 9: (2hours)

- 1. Cloudera Distribution of Hadoop(CDH) VM Setup
- 2. HDFS Practicals (HDFS Commands)
- 3. Map Reduce Anatomy
 - a. Job Submission.
 - b. Job Initialization.
 - c. Task Assignments.
 - d. Task Execution.

Day10: (4hours)

- 4. Schedulers
- 5. Map Reduce Failure Scenarios
- 6. Speculative Execution
- 7. Sequence File
- 8. Input File Formats
- 9. Output File Formats
- 10. Writable DataTypes
- 11. Custom Input Formats
- 12. Example List, show and run examples in map reduce.
- 13. Debugging Map Reduce Programs
- 14. Error Tracing of Map Reduce programs
- 15. Discussion on most common issues in MR.
- 16. Calculating the stats of MR Programs

Day11: (2hours)

Map Reduce Advance Concepts with usecases(Hands On):

- 17. Partitioning and Custom Partitioner
- 18. Joins

Course Duration: 25 days (60 hours duration).

- 19. Multi outputs
- 20. Counters
- 21. MR unit testcases
- 22. MR Design patterns
- 23. Distributed Cache
 - a. Command line implementation
- 24. MapReduce API implementation

Day12: (2hours)

Sqoop:

- 1. Sqoop Theory
- 2. Demo for Sqoop and Practicals.
- 3. Sqoop Imports and Exports
- 4. Sqoop Tuning.

Day 13: (2hours)

Hive:

- 1. Hive Background.
- 2. What is Hive?
- 3. Where to Use Hive?
- 4. Hive Architecture
- 5. Metastore
- 6. Hive execution modes.
- 7. External, Managed, External tables.

Day 14: (2hours)

- 8. Hive Partitioning
- 9. Hive Bucketing
- 10. Hive Data Model
- 11. Hive Data Types
 - a. Primitive
 - b. Complex
- 12. Queries:
 - c. Create Managed Table
 - d. Load Data
 - e. Insert overwrite table
 - f. Insert into Local directory.
 - g. CTAS.
 - h. Insert Overwrite table select.
- 13. Joins
 - a. Inner Joins
 - b. Outer Joins

Course Duration: 25 days (60 hours duration).

c. Skew Joins

Day 15: (4hours)

- 14. Hive Sort By, Order By
- 15. Multi-table Inserts
- 16. Multiple files, directories, table inserts.
- 17. Serde
 - a. RegexSerde
 - b. AvroSerde
- 18. Storing in Sequence and ORC File Format
- 19. UDF
- 20. Hive through CLI, Batch and Hue
- 21. Hive Practical's and Usecases
- 22. Hive Configuration and Hive-site.xml
- 23. Optimizing hive queries
- 24. Best Practices in Hive
- 25. Debugging Hive Scripts and Error Tracing.
 - a. Common Issues in Hive.
 - b. Hive Optimization Techniques and Best Practices

Day 16: (2hours)

Pig:

- 1. Need of Pig?
- 2. Why Pig Created?
- 3. Introduction to skew Join.
- 4. Why go for Pig when Map Reduce is there?
- 5. Pig use cases.
- 6. Pig built in operators
- 7. Pig store schema.

Day 17: (2hours)

- 8. Operators:
 - a. Load
 - b. Store
 - c. Dump
 - d. Filter.
 - e. Distinct
 - f. Group
 - g. CoGroup
 - h. Join
 - i. Stream
 - j. Foreach Generate
 - k. Parallel.
 - I. Distinct

Course Duration: 25 days (60 hours duration).

- m. Limit
- n. ORDER
- o. CROSS
- p. UNION
- q. SPLIT
- r. Sampling

Day 18: (2hours)

- 9. Dump Vs Store
- 10. DataTypes
 - a. Complex
 - i. Bag
 - ii. Tuple
 - iii. Atom
 - iv. Map
 - b. Primitives.
 - v. Integers
 - vi. Float
 - vii. Chararray
 - viii. byteArray
 - ix. Double

Day 19: (2hours)

- 11. Diagnostic Operators
 - c. Describe
 - d. Explain
 - e. Illustrate
- 12. UDFs.
- 13. Physical and Logical Execution Plans
- 14. Storage Handlers.
- 15. Pig Practicals and Usecases.
- 16. Pig vs Hive
- 17. Testing suite's for Pig like Pig Lipstick, Pig Penny for debugging and error tracing.
- 18. Data loading using HCatalog Loader
- 19. Pig Debugging using Explain and Illustrate commands
- 20. Pig Stats

Day 20: (4hours)

Impala:

- 1. Impala Architecture
- 2. ImpalaD Deamon
- 3. Impala StateStore
- 4. Impala Catalog

Course Duration: 25 days (60 hours duration).

- 5. MPP Architecture
- 6. Impala Practicals
- 7. Adhoc Querying in Impala.
- 8. Impala integration with Hive

Day 21: (2hours)

Hadoop File Formats:

- 1. Sequence File
- 2. Avro File
- 3. ORC File Format
- 4. Parquet File Format
- 5. Storing Hive data in these File Formats
- 6. Comparing File Formats
- 7. Compression techniques like snappy, lzo, bgzip,etc
- 8. AVRO Shemas

Comparing BigData Execution Engines (Tez, MR, DAG, RDD, MPP)

Day 22: (2hours)

Introduction to NOSQL Databases:

- 1. Problem with RDBMS
- 2. Row Oriented vs Column Oriented
- 3. Introduction to NOSQL DB's
- 4. CAP Theorem

Day 23: (2hours)

HBase:

- 1. Introduction to NOSQL Databases.
- 2. NOSql Landscapes
- 3. Introduction to HBASE
- 4. HBASE vs RDBMS
- 5. Create Table on HBASE using HBASE shell
- 6. Where to use HBASE?
- 7. Where not to use HBASE?
- 8. Write Files to HBASE.
- 9. Major Components of HBASE.
 - a. HBase Master.
 - b. HRegionServer.
 - c. HBase Client.
 - d. Zookeeper.
 - e. Region.
- 10. Compactions
- 11. HBase Practicals

Course Duration: 25 days (60 hours duration).

- 12. Bulk Loads
- 13. HBase Command Line
- 14. Using Map Reduce for HBase Operations
- 15. HBase Java Client Programming

Day 24: (2hours)

Flume:

- 1. Flume Architecture
- 2. Real time streaming in Flume
- 3. Defining and Deploying Flume Agents
- 4. Access data from multiple sources to collectors.
- 5. Different types of channels
- 6. Configuring Flume Agents
- 7. Running a Usecase

Day 25: (4hours)

Kafka:

- 1. Learn how to Develop Game-Changing Real Time Applications
- 2. Master kafka & its components
- 3. Understand architecture of kafka
- 4. Install kafka on single node as well as on multi-node cluster
- 5. Configure consumer, producer and brokers
- 6. Perform various Kafka Operations like adding and removing topics, modifying topics etc.

Oozie:

- 1. Oozie Architecture
- 2. Workflow designing in Oozie
- 3. Scheduling workflows in Oozie
- 4. Oozie practicals.
- **5.** Automate the testing process using Oozie